0=d^2-20d-80

Simple and best practice solution for 0=d^2-20d-80 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0=d^2-20d-80 equation:



0=d^2-20d-80
We move all terms to the left:
0-(d^2-20d-80)=0
We add all the numbers together, and all the variables
-(d^2-20d-80)=0
We get rid of parentheses
-d^2+20d+80=0
We add all the numbers together, and all the variables
-1d^2+20d+80=0
a = -1; b = 20; c = +80;
Δ = b2-4ac
Δ = 202-4·(-1)·80
Δ = 720
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{720}=\sqrt{144*5}=\sqrt{144}*\sqrt{5}=12\sqrt{5}$
$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-12\sqrt{5}}{2*-1}=\frac{-20-12\sqrt{5}}{-2} $
$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+12\sqrt{5}}{2*-1}=\frac{-20+12\sqrt{5}}{-2} $

See similar equations:

| 5x+11=x-(-5) | | z–18=-20 | | 5(4x+1)=-4(4x-3)-3x | | 2n-10=-8 | | 8(x−3)+14=2(−5+3x)+2x | | -(.2t^2-20t+375)=0 | | 2(5x+3)=-3(2x-3)+2x | | 3n^2+3n-60=0 | | 2(5x+2)=-2(5x-3)+3x | | 2w-2=10 | | 2(3x+1)=-4(3x-1)-3x | | 2(2x+2)=-2(2x-3)-5x | | x+3/4=x-2/2 | | −8+(x7)=−10 | | 5w^2-30=0 | | 4(4x+1)=-5(5x-5)+3x | | Y-2+4y+2=90 | | Y-2)-4y+2=180 | | 2(3x+2)=-2(5x-5)-3x | | -8x^2-6=-102 | | 2x+3/4=2 | | y-2+4y+2=180 | | 5t=-60 | | 5(2x+4)=-5(5x-5)-3x | | 12n-9=4n | | Y-2+3y=180 | | 8y-12+4y+8=180 | | -6(9x+5)-3x+4=-408+8 | | (4x+20)°+(7x+5)°=360° | | 5y+7+2y-1=180 | | 8/r+9/r-6=0 | | (4x+20)°+(7x+5)°=180° |

Equations solver categories